资源类型

期刊论文 337

会议视频 40

年份

2023 30

2022 43

2021 56

2020 44

2019 30

2018 28

2017 29

2016 31

2015 14

2014 6

2013 6

2012 10

2011 7

2010 7

2009 12

2008 2

2007 4

2005 2

2003 3

2002 2

展开 ︾

关键词

经济 6

绿色发展 6

可持续发展 5

秦巴山脉区域 5

绿色制造 5

绿色化工 5

农业科学 4

工程管理 4

环境 4

人工智能 3

城镇建设 3

汽车 3

绿色建筑 3

交通 2

交通基础设施 2

低碳发展 2

区域协同 2

发展战略 2

发展趋势 2

展开 ︾

检索范围:

排序: 展示方式:

Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control

Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0952-4

摘要: Stimulated by the recent USEPA’s green stormwater infrastructure (GSI) guidance and policies, GSI systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well-developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst performance for high intensity and long duration events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term control strategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event.

关键词: Green stormwater infrastructure (GSI)     Combined sewer overflows (CSOs)     Urban flooding     Low impact development (LID)     Stormwater Management Model (SWMM)    

Dynamic design of green stormwater infrastructure

Robert G. Traver, Ali Ebrahimian

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0973-z

摘要: This paper compares ongoing research results on hydrologic performance to common design and crediting criteria, and recommends a change in direction from a static to a dynamic perspective to fully credit the performance of green infrastructure. Examples used in this article are primarily stormwater control measures built for research on the campus of Villanova University [ , ]. Evidence is presented demonstrating that the common practice of crediting water volume based on soil and surface storage underestimates the performance potential, and suggests that the profession move to a more dynamic approach that incorporates exfiltration and evapotransporation. The framework for a dynamic approach is discussed, with a view to broaden our design focus by including climate, configuration and the soil surroundings. The substance of this work was presented as a keynote speech at the 2016 international Low Impact Development Conference in Beijing China [ ].

关键词: Low Impact Development (LID)     Stormwater control measures     Green infrastructure     Stormwater design    

Potential advantages in combining smart and green infrastructure over silo approaches for future cities

Yamuna KALUARACHCHI

《工程管理前沿(英文)》 2021年 第8卷 第1期   页码 98-108 doi: 10.1007/s42524-020-0136-y

摘要: Cities are incorporating smart and green infrastructure components in their urban design policies, adapting existing and new infrastructure systems to integrate technological advances to mitigate extreme weather due to climate change. Research has illustrated that smart green infrastructure (SGI) provides not only climate change resilience but also many health and wellbeing benefits that improve the quality of life of citizens. With the growing demand for smart technology, a series of problems and challenges, including governance, privacy, and security, must be addressed. This paper explores the potential to transition from grey, green, or smart silos to work with nature-based solutions and smart technology to help change cities to achieve considerable environmental and socio-economic benefits. The concepts of grey, green, and smart infrastructure are presented, and the needs, benefits, and applications are investigated. Moreover, the advantages of using integrated smart, green nature-based solutions are discussed. A comprehensive literature review is undertaken with keyword searches, including journal papers, stakeholder and case study reports, and local authority action plans. The methodology adopts multimethod qualitative information review, including literature, case studies, expert interviews, and documentary analysis. Published data and information are analysed to capture the key concepts in implementing SGI systems, such as storm-water control, flood and coastal defense, urban waste management, transportation, recreation, and asset management. The paper investigates the elimination of silo approaches and the alleviation of the destructions caused by extreme weather events using these interdependent SGI systems supported by novel data-driven platforms to provide nature-based solutions to boost the health and wellbeing of the residents.

关键词: grey infrastructure     green infrastructure     smart infrastructure     smart and green combined infrastructure     smart cities     future cities    

Effects of green roof damping and configuration on structural seismic response

《结构与土木工程前沿(英文)》   页码 1133-1144 doi: 10.1007/s11709-023-0959-9

摘要: Sustainable structures are critical for addressing global climate change. Hence, their structural resilience or ability to recover from natural events must be considered comprehensively. Green roofs are a widely used sustainable feature that improve the environment while providing excellent occupant amenity. To expand their usage, their inherent damping and layout sensitivity to seismic performance are investigated in this study. The soil of a green roof can serve as a damper to dissipate the energy generated by earthquakes or other dynamic events. Results of preliminary analysis show that a green roof soil can increase localized damping by 2.5% under both dry and saturated conditions. Based on these findings, nonlinear time-history analyses are conducted on a three-story building in SAP2000 to monitor the structural behavior with and without a green roof. The increased damping in the green roof soil is beneficial to the structural performance, i.e., it reduces the building displacement and acceleration by 10% and 12%, respectively. Additionally, certain configurations are more effective and beneficial to the structural response than others, which suggests the possibility of design optimization. Based on the findings of this study, new methods of modeling and considering green roofs in structural design are established.

关键词: green infrastructure     green roof     structural resilience     seismic design    

中国生态文明的基础设施

Chris Kennedy, Ma Zhong, Jan Corfee-Morlot

《工程(英文)》 2016年 第2卷 第4期   页码 414-425 doi: 10.1016/J.ENG.2016.04.014

摘要:

预计到2020 年,中国的绿色投资需求将达到每年1.7 万亿~2.9 万亿元人民币( 折合2740 亿~4680 亿美元)。对经济需求的评估已经提供给了众多的行业,包括可持续能源、基础设施建设( 包括环境保护)、环境修复、工业污染控制、能源和水资源效率以及绿色产品。中国的绿色财政的背景已经在讨论之中,覆盖了城镇化、气候改变、基础设施交互以及工业模式的转变。很多基础设施建设的融资发生在城市中,聚焦在《国家新型城镇化规划(2014—2020 年)》下的公平、环境保护以及生活质量问题。中国在建筑行业已经实施了很多成功的政策,但是中国的建筑节能仍有相当大的提升空间。中国目前正在追求低碳的增长战略,这与中国的整体环境和生活质量目标一致。到2020 年之后,中国作为一个生态文明国家的未来将建立在一个中央基础设施政策的实施上,这个政策就是《中国2050 高比例可再生能源发展情景暨路径研究》。以《循环经济发展战略及近期行动计划》为例,中国绿色工业转型的关键一步涉及节约材料的工程系统,以此减少甚至清除废料。为了更好地理解中国经济在其绿色转型中的改变,以及释放其巨大的潜在资金来源,有必要对中国所有的基础设施部门进行更加全面的研究,尤其是货运铁路的基础设施和港口。要清理土壤和地下水中的环境污染残留物,以及减少工业污染,都需要巨大的投资。电力行业摒弃煤炭的转型将会避免一些工业治理成本。工程师在计划、设计和构造中国新绿色基础设施中的贡献,也同样会在理解了宽松的政策环境以及土地利用、基础设施和环保成效间的相互作用后更进一步。

关键词: 可持续工程     绿色增长     工业生态     低碳发展     绿色金融    

Pesticides in stormwater runoff−A mini review

Cheng Chen, Wenshan Guo, Huu Hao Ngo

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1150-3

摘要: • The sources and pathways of pesticides into stormwater runoff were diverse. • Factors affecting pesticides in stormwater runoff were critically reviewed. • Pesticides mitigation strategies were included in this review. • The current knowledge gap of the pesticides in stormwater runoff was identified. Recently, scientific interest has grown in harvesting and treating stormwater for potable water use, in order to combat the serious global water scarcity issue. In this context, pesticides have been identified as the key knowledge gap as far as reusing stormwater is concerned. This paper reviewed the presence of pesticides in stormwater runoff in both rural and urban areas. Specifically, the sources of pesticide contamination and possible pathways were investigated in this review. Influential factors affecting pesticides in stormwater runoff were critically identified as: 1) characteristics of precipitation, 2) properties of pesticide, 3) patterns of pesticides use, and 4) properties of application surface. The available pesticide mitigation strategies including best management practice (BMP), low impact development (LID), green infrastructure (GI) and sponge city (SC) were also included in this paper. In the future, large-scale multi-catchment studies that directly evaluate pesticide concentrations in both urban and rural stormwater runoff will be of great importance for the development of effective pesticides treatment approaches and stormwater harvesting strategies.

关键词: Pesticide     Stormwater runoff     Occurrence     Urban runoff    

Low-cost adsorbents for urban stormwater pollution control

Yang Deng

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1262-9

摘要: Abstract • Various low-cost adsorbents are studied for capturing urban stormwater pollutants. • Adsorbents are selected based on both pollutant adsorption and unexpected leaching. • Application modes of adsorbents influence their utilization efficacy in practice. Stormwater represents a major non-point pollution source at an urban environment. To improve the treatment efficacy of stormwater infrastructure, low-cost adsorbents have increasingly gained attention over the past decades. This article aims to briefly discuss several key aspects and principles for utilization of low-cost adsorbents for urban stormwater treatment. To determine whether a low-cost adsorbent is suitable for stormwater treatment, two aspects should be carefully assessed, including: 1) its adsorption mechanisms and behaviors that can influence the binding stre.g.,h, adsorption kinetics, and treatment capacity; and 2) unwanted chemical leaching patterns that can affect the extent of water quality degradation. Furthermore, the application mode of an adsorbent in the system design influences the utilization efficiency. Adsorbents, after dosed to soil media in infrastructure, would eventually become ineffective after oversaturation. In contrast, standalone filters or innovative composite adsorbents (e.g., adsorbent-coated mulch chips) can enable a long-lasting adsorption due to periodic replacement with fresh adsorbents. The aforementioned principles play a key role in the success of urban stormwater treatment with low-cost adsorbents.

关键词: Urban stormwater     Runoff pollutants     Low-cost adsorbents     Adsorption     Chemical leaching    

On water security, sustainability, and the water-food-energy-climate nexus

Michael Bruce BECK, Rodrigo VILLARROEL WALKER

《环境科学与工程前沿(英文)》 2013年 第7卷 第5期   页码 626-639 doi: 10.1007/s11783-013-0548-6

摘要: The role of water security in sustainable development and in the nexus of water, food, energy and climate interactions is examined from the starting point of the definition of water security offered by Grey and Sadoff. Much about the notion of security has to do with the presumption of scarcity in the resources required to meet human needs. The treatment of scarcity in mainstream economics is in turn examined, therefore, in relation to how each of us as individuals reconciles means with ends, a procedure at the core of the idea of sustainable development. According to the Grey-Sadoff definition, attaining water security amounts to achieving basic, single-sector water development as a precursor of more general, self-sustaining, multi-sectoral development. This is consistent with the way in which water is treated as “first among equals”, i.e. privileged, in thinking about what is key in achieving security around the nexus of water, food, energy and climate. Cities, of course, are locations where demands for these multiple resource-energy flows are increasingly being generated. The paper discusses two important facets of security, i.e., diversity of access to resources and services (such as sanitation) and resilience in the behavior of coupled human-built-natural systems. Eight quasi-operational principles, by which to gauge nexus security with respect to city buildings and infrastructure, are developed.

关键词: cities as forces for good     diversity     energy and nutrient recovery     green economy     infrastructure failure     resilience    

Characteristics of pollutants behavior in a stormwater constructed wetland during dry days

Jianghua YU, Kisoo PARK, Youngchul KIM

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 649-657 doi: 10.1007/s11783-012-0426-7

摘要: A stormwater wetland treating non-point source pollution (NPS) from a 64 ha agricultural watershed was monitored over a period of five months. The results indicated that pH and dissolved oxygen (DO) were increased in the wetland due to the algal growth. The highest total suspended solids (TSS) concentration was observed in the aeration pond due to the resuspension of solids, decreased in the wetland. The respective decreases in total nitrogen (TN) and total kjeldahl nitrogen (TKN) were 15.9% and 28.7% on passing through the wetland. The nitrate and ammonia were increased by 45.4% and decreased by 79.9%, respectively. These variations provided strong evidence for the existence of nitrification. The total phosphorus (TP) and phosphate had respective reductions of 52.3% and 58.2% over the wetland. The total chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) were also decreased. Generally, the TN, TP and phosphate removal efficiencies were positive. These positive removal efficiencies were mainly due to microbial activities, uptake by plants, and chemical precipitation at high pH. Negative removal efficiencies can be caused by continuous rainfall activities, with short antecedent dry days (ADDs) and unstable hydraulic conditions, some other biogeochemical transformations and algal growth also being important parameters.

关键词: constructed stormwater wetland     dry days     nitrification and denitrification     pollutants characteristic    

Treatability aspects of urban stormwater stressors

Anthony N. TAFURI, Richard FIELD

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 631-637 doi: 10.1007/s11783-012-0420-0

摘要: Pollution from diffuse sources (pollution from contaminants picked up and carried into surface waters by stormwater runoff) has been identified as a significant source of water quality problems in the U.S. scientists and engineers continue to seek solutions that will allow them to optimize existing technologies and develop new ones that will provide the best possible protection to people, wildlife, and the environment. This paper addresses the various pollutants or stressors in urban stormwater, including flow (shear force), pathogens, suspended solids/sediment, toxicants (organic and metals), nutrients, oxygen demanding substances, and coarse solids. A broad overview of the pollutants removed and the removal mechanisms by and of conventional best management practices (BMPs) is also presented. The principal treatment mechanisms of conventional wet ponds, vegetative swales/buffer strips, and wetlands are sedimentation and filtration. These mechanisms have the capability to remove significant amounts of suspended solids or particulate matter and are a vital component of strategies to reduce pollutant loads to receiving waters. In addition, because most of the nation’s receiving water violations are caused by pathogen indicator bacteria, it is of utmost importance that research efforts address this problem. Further research is also needed on the treatment of emerging contaminants in BMPs and on the costs and affects of maintenance and maintenance schedules on the long-term performance of BMPs.

关键词: stormwater     wet weather flow     urban runoff    

Abundance, spatial distribution, and physical characteristics of microplastics in stormwater detention

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1724-y

摘要: Despite extensive research on microplastics (MP) in marine environments, little is known about MP abundance and transport in terrestrial systems. There is, therefore, still little understanding of the main mechanisms driving the substantial transport of MP across different environmental compartments. Storm events can transport MP beyond boundaries, such as from the land to groundwater or the ocean, as has already been discovered for organic carbon transport. Urban stormwater detention ponds are suitable environments to study the impact of stormwater on the environmental fate and transport of MP. Herein, we investigate the longitudinal and vertical distribution of MP within two detention ponds with different physical characteristics. Soil samples were collected at various locations and from multiple depths (surface and subsurface layers) for measuring MP concentrations using fluorescence microscopy. Our findings show that MP are retained more near the inlet of the ponds, and MP of larger sizes were found more abundantly near inlets than outlets. We also found that MP mass and sizes decrease from surface soil to subsurface soil. In the pond, where vegetation (grass root network) was more considerable, MP were found more evenly distributed along the depth. In terms of shape, the fragments were the most abundant MP shape.

关键词: Microplastic     Environmental transport     Soil pollution     Stormwater     Detention ponds    

Managing airport stormwater containing deicers: challenges and opportunities

Xianming SHI,Stephen M. QUILTY,Thomas LONG,Anand JAYAKARAN,Laura FAY,Gang XU

《结构与土木工程前沿(英文)》 2017年 第11卷 第1期   页码 35-46 doi: 10.1007/s11709-016-0366-6

摘要: Stormwater runoff at airports is a significant and costly issue, especially for the stormwater laden with deicing contaminants of high Biochemical Oxygen Demand (BOD) and aquatic toxicity. To reduce the loading of deicing constituents in stormwater and to manage the increasing pressure of tightening regulations, identifying fate and transport and evaluating environmental risks of deicing stormwater are of critical importance. In this review, the regulatory development of airport deicing stormwater management was first discussed, along with the milestone publication. The deicer usage and fugitive losses can be reduced and the amount of deicer collected can be increased by having a better understanding of the fate and transport of deicing constituents in stormwater. As such, an overview and evaluation of the constituents of concern in deicers were provided to support the assessment of environmental impacts and mitigation recommendations. The state of knowledge of airport deicing stormwater management was then reviewed, which needs to be synthesized into a national guidance document. A guidebook and a decision tool for airports were proposed to adopt specific practical stormwater management strategies while balancing their priorities in environmental, economic, and social values against operational constraints. These challenges pose great opportunities to improve the current practices of airport deicing stormwater management.

关键词: airport     deicer     stormwater     guidebook     decision tool    

A critical literature review of bioretention research for stormwater management in cold climate and future

Hannah Kratky, Zhan Li, Yijun Chen, Chengjin Wang, Xiangfei Li, Tong Yu

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0982-y

摘要: Bioretention is a popular best management practice of low impact development that effectively restores urban hydrologic characteristics to those of predevelopment and improves water quality prior to conveyance to surface waters. This is achieved by utilizing an engineered system containing a surface layer of mulch, a thick soil media often amended with a variety of materials to improve water quality, a variety of vegetation, and underdrains, depending on the surrounding soil characteristics. Bioretention systems have been studied quite extensively for warm climate applications, but data strongly supporting their long-term efficacy and application in cold climates is sparse. Although it is apparent that bioretention is an effective stormwater management system, its design in cold climate needs further research. Existing cold climate research has shown that coarser media is required to prevent concrete frost from forming. For spring, summer and fall seasons, if sufficient permeability exists to drain the system prior to freezing, peak flow and volume reduction can be maintained. Additionally, contaminants that are removed via filtration are also not impacted by cold climates. In contrary, dissolved contaminants, nutrients, and organics are significantly more variable in their ability to be removed or degraded via bioretention in colder temperatures. Winter road maintenance salts have been shown to negatively impact the removal of some contaminants and positively impact others, while their effects on properly selected vegetation or bacteria health are also not very well understood. Research in these water quality aspects has been inconsistent and therefore requires further study.

关键词: Bioretention     Cold climate     Low impact development     Stormwater    

China’s Sponge City construction: A discussion on technical approaches

Haifeng Jia, Zheng Wang, Xiaoyue Zhen, Mike Clar, Shaw L. Yu

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0984-9

摘要: Since 2014, China has been implementing the Sponge City Construction initiative, which represents an enormous and unprecedented effort by any government in the world for achieving urban sustainability. According to preliminary estimates, the total investment on the Sponge City Plan is roughly 100 to 150 million Yuan (RMB) ($15 to $22.5 million) average per square kilometer or 10 Trillion Yuan (RMB) ($1.5 Trillion) for the 657 cities nationwide. The Sponge City Plan (SCP) calls for the use of natural processes such as soil and vegetation as part of the urban runoff control strategy, which is similar to that of low impact development (LID) and green infrastructure (GI) practices being promoted in many parts of the world. The SCP includes as its goals not only effective urban flood control, but also rainwater harvest, water quality improvement and ecological restoration. So far, the SCP implementation has encountered some barriers and challenges due to many factors. The present paper presents a review of those barriers and challenges, offers discussions and recommendations on several technical aspects such as control goals and objectives; planning/design and construction of LID/GI practices; performance evaluation. Several key recommendations are proposed on Sponge City implementation strategy, Site-specific regulatory framework and technical guidance, Product innovation and certification, LID/GI Project financing, LID/GI professional training and certification, public outreach and education. It is expected that the successful implementation of the SCP not only will bring about a sustainable, eco-friendly urbanization process in China, but also contribute enormously to the LID/GI research and development with the vast amount of relevant data and experiences generated from the Sponge City construction projects.

关键词: Low impact development (LID)     Green infrastructure (GI)     Sponge City     Barriers     Construction strategies    

Transferral of HMs pollution from road-deposited sediments to stormwater runoff during transport processes

Qian Wang, Qionghua Zhang, Mawuli Dzakpasu, Nini Chang, Xiaochang Wang

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1091-x

摘要:

Ratio of turbidity and TSS (Tur/TSS) was used to characterize PSD of stormwater particles.

Pb and Zn preferred to accumulate in finer RDS, while Cu, Cr and Ni in coarser RDS.

HMs pollution in stormwater particles increased linearly with Tur/TSS.

Dissolvability of HMs and PSD variations contribute to the differences between RDS and stormwater.

关键词: Road-deposited sediment     Stormwater runoff     Heavy metal     Particle size     Pollution variation    

标题 作者 时间 类型 操作

Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control

Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying

期刊论文

Dynamic design of green stormwater infrastructure

Robert G. Traver, Ali Ebrahimian

期刊论文

Potential advantages in combining smart and green infrastructure over silo approaches for future cities

Yamuna KALUARACHCHI

期刊论文

Effects of green roof damping and configuration on structural seismic response

期刊论文

中国生态文明的基础设施

Chris Kennedy, Ma Zhong, Jan Corfee-Morlot

期刊论文

Pesticides in stormwater runoff−A mini review

Cheng Chen, Wenshan Guo, Huu Hao Ngo

期刊论文

Low-cost adsorbents for urban stormwater pollution control

Yang Deng

期刊论文

On water security, sustainability, and the water-food-energy-climate nexus

Michael Bruce BECK, Rodrigo VILLARROEL WALKER

期刊论文

Characteristics of pollutants behavior in a stormwater constructed wetland during dry days

Jianghua YU, Kisoo PARK, Youngchul KIM

期刊论文

Treatability aspects of urban stormwater stressors

Anthony N. TAFURI, Richard FIELD

期刊论文

Abundance, spatial distribution, and physical characteristics of microplastics in stormwater detention

期刊论文

Managing airport stormwater containing deicers: challenges and opportunities

Xianming SHI,Stephen M. QUILTY,Thomas LONG,Anand JAYAKARAN,Laura FAY,Gang XU

期刊论文

A critical literature review of bioretention research for stormwater management in cold climate and future

Hannah Kratky, Zhan Li, Yijun Chen, Chengjin Wang, Xiangfei Li, Tong Yu

期刊论文

China’s Sponge City construction: A discussion on technical approaches

Haifeng Jia, Zheng Wang, Xiaoyue Zhen, Mike Clar, Shaw L. Yu

期刊论文

Transferral of HMs pollution from road-deposited sediments to stormwater runoff during transport processes

Qian Wang, Qionghua Zhang, Mawuli Dzakpasu, Nini Chang, Xiaochang Wang

期刊论文